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The quick environment development makes impossible that an enterprise, 
working individually, can respond to market opportunities. For this reason, 
more and more firms are aware and motivated to improve their offer and 
competitiveness by means of collaboration, through sharing competencies 
and resources. In this context, finding the suitable partners is an important 
issue and the key step in the formation of any collaboration. Further, the 
decision on which partner should be selected for each task depends, not 
only on operational characteristics such as cost, quality, etc., but also on 
financial situation, capability to work in collaboration with other partners 
and even past performance in collaborative processes. Several researchers 
have investigated the Partner Selection (PS) criteria in different context. 
The PS problem is considered as a Multi Criteria Decision Making (MCDM) 
problem where several evaluation criteria must be considered. Multicriteria 
decision analysis (MCDA) evaluates options with an additive independent 
value function. Numerical evaluation criteria (scores) are increasingly difficult 
to assign, because of inherent complexity of the subject and of imprecise or 
incomplete knowledge on part of the decision makers. 

Abstract Aim of the present paper is to give a wider generalization of Multiple Criteria 
Decision Making (MCDM), for partner selection, where the information is 
uncertain: imprecise /incomplete, both in evaluations and weights. Fuzzy sets 
are a natural choice to handle uncertainty of decision makers. In the present 
work, triangular fuzzy numbers are used and combined with each other 
by means of the interval algebra operations on their alphacuts. A recently 
developed method to compute the maximum and minimum between single 
peaked fuzzy numbers permits to identify the maximum and minimum of 
aggregated preference scores as reference points to be used for ranking and 
selection.

Keywords: 
Multiple Criteria Decision Making
Partner Selection
Fuzzy numbers
Fuzzy maximum/minimum
Single peaked fuzzy numbers

Digitization is causing a transition with deep 
consequences on entrepreneurs and firms. 
Information and knowledge are being produced at 
an unprecedented rate and the success of business 
initiatives largely depends on how these factors and how 
efficiently they are managed (Carayannis et al., 2006).
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their knowledge, fully integrated in the firm and immediately applicable, 
leaves with them (Nicolaescu et al., 2019). Even in firms where the core 
internal competency is technological development, outsourcing at least 
some R&D can be beneficial (Cefis and Triguero, 2016). In the first place, a 
firm has to decide whether or not to perform R&D internally. Once a firm 
has determined to look for partners, contracting R&D with external entities 
involves an accurate search for reliable and capable partners. Further costs 
arise from the need to prepare robust contracts. Besides partnerships, 
mergers and acquisitions (M&A) can also be considered (Cefis and Triguero, 
2016). While M&A requires significant financial and organizational effort, 
it may bring the additional benefit of improving efficiency (economies 
of scale and sharing R&D expenditures) and even correcting managerial 
inefficiencies and weak corporate control mechanisms. All of these decisions 
involve an articulated assessment of costs and benefits, and the available 
information is almost always characterized by vagueness, ambiguity, and 
uncertainty. There are many methods in the field of decision analysis that 
try to help a decision maker take a decision, that is, to find an optimal or 
satisfying solution. Multicriteria decision analysis (MCDA) evaluates options 
with an additive independent value function (Pape, 2017).
The aim of this paper is to give a wider generalization of Multiple Criteria 
Decision Making (MCDM) where information is incomplete about 
evaluations and weights in the framework of fuzzy numbers. A fuzzy linear 
programming technique for solving Multiattribute Decision Making (MADM) 
problems with multiple types of attribute values and partial information 
about weights has been proposed in (Li and Wan, 2013), using trapezoidal 
fuzzy numbers. The MCDM has been generalized to the case of interval 
judgments on the weights and interval value scores (Mustajoki et al., 2005) 
in order to consider preferential uncertainty, imprecision, or incomplete 
information. The SMART and SWING methods for point estimates are 
generalized using interval judgements to reflect imprecision. In SMART, 
the user begins with identifying the least important criterion, and then the 
remaining criteria are rated relative to the least important one. In SWING, 
decision makers are iteratively asked to identify the criterion where they 
would most prefer a change from the worst value to the best value. The 
reference attribute is crisp, and subsequent assessments are expressed with 
interval values, resulting in constraints that determine the feasible region 
for weights. A decision support framework for planning and management in 
electrical energy companies, offering a variety of fuzzy preference relations 
has been proposed by Koshenev et al. (Kokshenev et al., 2014) In the context 
of selecting the best policy alternative on the energy market, Kahraman and 
Kaya (Kahraman and Kaya, 2010) applied a modified fuzzy Analytic Hierarchy 

1. Introduction
Digitization is causing a transition with deep consequences on 
entrepreneurs and firms. Information and knowledge are being produced 
at an unprecedented rate and the success of business initiatives largely 
depends on how these factors and how efficiently they are managed 
(Carayannis et al., 2006). New technologies are introduced, but this process is 
gradual, creating the need to manage digital and legacy production plants, 
as well as innovative and traditional business models. The ability to adapt to 
technological changes quickly is a powerful factor for fruitful cooperation 
within Innovation Systems (ISs), both at an intraorganizational level and at 
an interorganizational level. Postponing the adoption emerging technology 
until it is mature may result in a competitive disadvantage, because 
adopting innovative technology early emerging technology can also bring 
substantial returns (see, e.g., (Castellano et al., 2019) for a recent analysis). 
However, investments in innovative technology when it is in its early stages 
is risky. To pioneer new technologies that are not their own development, 
firms need to search for, acquire and integrate knowledge from the outside, 
often the academic community. Through a meaningful mutual exchange 
between industry and academia, firms can assimilate external knowledge 
and researchers can concentrate their efforts on realworld problems. 
Industryacademia collaboration has been the subject of rich literature on 
technology transfer and corporate strategic technology alliances (Carayannis 
et al., 2014). Such collaboration can result in incubators associated with 
universities, offering firms businesses support services as well as assistance 
in seeking financial backing (Carayannis et al., 2006). Technology clusters, 
supported by a reliable and efficient ICT infrastructure, enable firms to thrive 
on synergies deriving from proximity (Carayannis et al., 2006). Interaction 
between industry and academia can also happen when employees publish 
their research results and present them in conferences (Tegarden et al., 
2011).
A firm can acquire technological knowledge in different ways. Firm can 
invest in their internal R&D departments, outsource R&D with third parties, 
or buy firms who already have developed the desired assets. While internal 
R&D may be attractive, it adds uncertainty because firms do not know in 
advance what the innovative output is going to be. In addition, it takes time 
to set up a productive team: the most effective setting involves the creation 
of a knowledgecentered organizations, where learning is encouraged and 
supported. Such organizations are attractive for employees and increase 
their level of satisfaction (Janz and Prasarnphanich, 2009). As Intellectual 
Capital becomes more important, motivation of employees accentuates 
its prominence because, when dissatisfied workers leave an organization, 
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Process (AHP) method to compute the priority weights of energy policy 
alternatives. In that work, a method based on distances has been used for 
ranking the fuzzy scores in order to select the best alternatives. However, the 
reference targets were the crisp maximum and minimum. In contrast, the 
fuzzy maximum and minimum have been used here. The calculation of fuzzy 
minimum and maximum plays an important role because the weighted sum 
of fuzzy evaluation scores when the weight themselves are fuzzy numbers 
produces fuzzy numbers of any shape.
The remainder of this manuscript is structured as follows. After a brief review 
of the vast related literature in Section 2, essential concepts and notations 
are described in Section 3. The proposed technique is elucidated in Section 
4. Finally, Section 5 contains some final remarks and outlines directions for 
future research.

2.
Related work

1.
Introduction

2. Related Work
The problem of green supplier evaluation and selection has been 
investigated in (Qin et al., 2017), where type2 fuzzy sets and prospect theory 
are combined into an integrated approach Multiple Criteria Group Decision 
Making (MCGDM). Consistency for interval fuzzy preference relations 
(IFPRs) is receiving considerable attention from the scientific community 
(Meng et al., 2019). In the AHP model, developed by Saaty (Saaty, 1980), 
a decision-making problem is hierarchically decomposed into a series of 
choices involving alternatives and preference criteria. The best solution is 
obtained through pairwise comparisons of alternatives according to criteria, 
giving rise to a collection of preference relations. Within the context of fuzzy 
AHP, intervalvalued matrices can be used to describe uncertainty on part 
of decision makers (Pape, 2017). To add further complexity, the interval
valued comparison matrix may be incomplete, expressing lack of knowledge 
by decision makers. The estimation of missing entries in the incomplete 
intervalvalued matrices can be done by means of goal programming models 
(Huang et al., 2019), based on appropriate redefinition of multiplicative 
and additive approximate consistency rules for interval additive reciprocal 
preference relations (IARPRs).
In portfolio decision analysis, more than one option can be selected. 
Interesting ideas have been developed in the context of investment 
portfolio selection problems. In such problems, investors make choices 
based on their personal knowledge and experience, because quantities 
like risk, expected returns, and liquidity are subject to uncertainty and, as a 
consequence, deterministic algorithms are not effectively applicable. Given 
the presence of nonstochastic elements in the market, fuzzy models have 
been proposed for portfolio selection. A strategy for attacking the portfolio 
selection problem involves first transforming the fuzzy optimization problem 
into a multi-objective optimization problem, and then solving the latter by 
means of fuzzy decision-making techniques (Solatikia et al., 2014). Investor 
preferences determine the optimal multi-objective solution according to 
alternative scenarios. A fuzzy multiobjective model for portfolio selection, 
striking a balance between strategic contributions and financial returns, was 
proposed by Guo et al. (Guo et al., 2018). The solution was obtained by the 
adoption of a MultiObjective Genetic Algorithm.
Relich and Pawlewski (Relich and Pawlewski, 2017), on the basis of the 
observation that the criteria for product selection are often uncertain and 
complex, combined neural networks and fuzzy weighted average for project 
ranking. Individual weights about the importance of each product were 
gathered by means of a questionnaire, transforming linguistic variables 
into fuzzy numbers. The selection of the products having the highest fuzzy 



Multicriteria decision making for innovation partner selection in a fuzzy environment  13

3.
Preliminaries

2.
Related work

score while at the same time meeting manufacturing constraints was done 
through a neural network.
Finally, to support strategic decisions about the management and planning 
of clinical trials in the pharmaceutical industry and provide managers at 
different responsibility levels with information concerning financial and 
operational risks, three structured fuzzy inference systems (FISs) were used 
(Puente et al., 2019)

7 

3. Preliminaries 
In this section some definitions and basic results from the theory of fuzzy 
sets are reported. 
Wide surveys and references may be found in (Zadeh, 1965), (Zimmermann, 
2011), (Klir and Yuan, 1995). Let 𝑋𝑋 be a universal set, with a generic element 
of 𝑋𝑋 denoted by 𝑥𝑥. Thus, 𝑋𝑋 = 𝑥𝑥 . A fuzzy set 𝑁𝑁 in X (fuzzy subset 𝑁𝑁 of 𝑋𝑋) is 
characterized by a membership function 𝜇𝜇! 𝑥𝑥  which associates with each 
point in 𝑋𝑋 a real number in the interval 0,1 . The value𝜇𝜇! 𝑥𝑥  represents the 
grade of membership of 𝑥𝑥 in 𝑁𝑁. When 𝑁𝑁 is a set in the ordinary sense of the 
term, its membership can take only two values 0 and 1 according as 𝑥𝑥 does 
or does not belong to 𝑁𝑁. Let 𝑁𝑁 be a fuzzy subset of 𝑋𝑋, the 𝛼𝛼-𝑐𝑐𝑐𝑐𝑐𝑐 of 𝑁𝑁 is 
defined as: 
 

N [α] = {x ∈ X | 𝜇𝜇! (x) ≥ α}, for 0 < α ≤ 1 
 
The core of 𝑁𝑁, 𝑐𝑐𝑐𝑐 𝑁𝑁 , is 𝑁𝑁 1  while the support of 𝑁𝑁, 𝑠𝑠𝑠𝑠 𝑁𝑁 , of 𝑁𝑁 is not 𝑁𝑁 0  
(which is always the whole universe 𝑋𝑋) but 𝑠𝑠𝑠𝑠 𝑁𝑁 = 𝑥𝑥 ∈ 𝑋𝑋|𝜇𝜇! 𝑥𝑥 > 𝛼𝛼 . 
With 𝑠𝑠𝑠𝑠 𝑁𝑁  will be denoted the closure of the support of 𝑁𝑁. A fuzzy number 
is called single peak if the core is a singleton. 
Referring to (Goetschel Jr and Voxman, 1986) (see also (Chai and Zhang, 
2016)) a fuzzy number 𝑁𝑁 is a fuzzy subset of ℝ, with membership function 
denoted by µ! , satisfying the following conditions: 
 
1. 𝜇𝜇! is normal, i.e., 𝑐𝑐𝑐𝑐 𝑁𝑁  is non­empty. 
2. 𝜇𝜇! is compactly supported, i.e., 𝑠𝑠𝑠𝑠 𝑁𝑁  is bounded; 
3. 𝜇𝜇! is quasi­concave, i.e., 𝑥𝑥 ⩽  𝑦𝑦 ⩽  𝑧𝑧 implies: 

𝑚𝑚𝑚𝑚𝑚𝑚 𝜇𝜇! 𝑥𝑥 , 𝜇𝜇! 𝑧𝑧 ⩽ 𝜇𝜇! 𝑦𝑦  ∀𝑥𝑥, 𝑦𝑦, 𝑧𝑧 ∈ ℝ; 
4. 𝜇𝜇! is upper semi­continuous, i.e., ∀ 𝛼𝛼 ∈ ]0,1], 𝑁𝑁[𝛼𝛼] is closed. 

 
In (Goetschel Jr and Voxman, 1986) the following characterization of a fuzzy 
number is given. 
Defining 
 

𝑁𝑁 𝛼𝛼  

=     𝑥𝑥 𝜖𝜖 ℝ | 𝜇𝜇! 𝑥𝑥  ≥  𝛼𝛼 , 𝑖𝑖𝑖𝑖 0 < 𝛼𝛼 ≤ 1;    
𝑠𝑠𝑠𝑠 𝑁𝑁 ,                                    𝑖𝑖𝑖𝑖 𝛼𝛼 = 0 ;        

 

 

(1) 

 
it can be shown that 𝑁𝑁 is a fuzzy number if and only if 
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1. 𝑁𝑁 𝛼𝛼  is a closed and bounded interval ∀𝛼𝛼 ∈ 0,1 ; 
2. 𝑁𝑁 1 ≠ ∅ 
 
Using this characterization, we can identify a fuzzy number 𝑁𝑁 with the 
parameterized representation 𝑁𝑁 𝛼𝛼 ,𝑁𝑁 𝛼𝛼  𝛼𝛼 ∈  [0,1]}, where 𝑁𝑁 𝛼𝛼  and 
𝑁𝑁 𝛼𝛼  denote respectively the left hand endpoint and the right hand 
endpoint of 𝑁𝑁 𝛼𝛼 . By this parameterized representation, given two fuzzy 
numbers 𝑁𝑁,𝑀𝑀 and a real number 𝑐𝑐, these may be combined by means of the 
interval algebra operations as reported below: 
 
1. 𝑁𝑁 +𝑀𝑀 = 𝑁𝑁 𝛼𝛼 +𝑀𝑀 𝛼𝛼 , 𝑁𝑁 𝛼𝛼 +𝑀𝑀 𝛼𝛼  | 𝛼𝛼 ∈  0, 1  
2. 𝑁𝑁 −𝑀𝑀 = 𝑁𝑁 𝛼𝛼 −𝑀𝑀 𝛼𝛼 , 𝑁𝑁 𝛼𝛼 −𝑀𝑀 𝛼𝛼  | 𝛼𝛼 ∈  0, 1  
3. 𝑁𝑁 ∙ 𝑀𝑀 = 𝑃𝑃 𝛼𝛼 , 𝑃𝑃 𝛼𝛼  | 𝛼𝛼 ∈  0, 1 ,  

 
where 
 

𝑃𝑃 𝛼𝛼 = 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 𝛼𝛼 𝑀𝑀 𝛼𝛼 ,𝑁𝑁 𝛼𝛼 𝑀𝑀 𝛼𝛼 ,𝑁𝑁 𝛼𝛼 𝑀𝑀 𝛼𝛼 ,𝑁𝑁 𝛼𝛼 𝑀𝑀 𝛼𝛼  
𝑃𝑃 𝛼𝛼 = 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 𝛼𝛼 𝑀𝑀 𝛼𝛼 ,𝑁𝑁 𝛼𝛼 𝑀𝑀 𝛼𝛼 ,𝑁𝑁 𝛼𝛼 𝑀𝑀 𝛼𝛼 ,𝑁𝑁 𝛼𝛼 𝑀𝑀 𝛼𝛼  

 
4. If ∀𝛼𝛼 ∈ 0, 1 , 0 ∉ 𝑀𝑀 𝛼𝛼  

𝑁𝑁
𝑀𝑀 =

𝑁𝑁 𝛼𝛼
𝑀𝑀 𝛼𝛼

,
𝑁𝑁 𝛼𝛼
𝑀𝑀 𝛼𝛼 | 𝛼𝛼 ∈  0, 1  

5. 𝑐𝑐𝑐𝑐 =
𝑐𝑐𝑁𝑁 𝛼𝛼 , 𝑐𝑐𝑁𝑁 𝛼𝛼  | 𝛼𝛼 ∈  0, 1 , 𝑖𝑖𝑖𝑖 𝑐𝑐 > 0;
𝑐𝑐𝑁𝑁 𝛼𝛼 , 𝑐𝑐𝑁𝑁 𝛼𝛼  | 𝛼𝛼 ∈  0, 1 , 𝑖𝑖𝑖𝑖 𝑐𝑐 < 0;

0, 𝑖𝑖𝑖𝑖 𝑐𝑐 = 0.
 

 
It is known that, in many practical applications when handling with fuzzy 
numbers, it is necessary to have a permanent switch from a fuzzy 
representation to a numerical one. This transformation is usually carried out 
by the defuzzification process which, however, may cause loss of 
information. By means of the parameterized representation already 
described, fuzzy numbers are combined one to another making use of the 
interval algebra instruments preserving all the information in the data. 
Operations between fuzzy numbers are easily implemented on a computer 
by means of interval arithmetic on their 𝛼𝛼-𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, which are always closed and 
bounded intervals for 0 ≤  𝛼𝛼 ≤  1. The 𝛼𝛼-𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 of a fuzzy number are 
univocally determined computing left/right side membership inverse. 
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3.1. Fuzzy maximum and minimum 
A fuzzy number 𝐴𝐴 is called single peak if 𝑐𝑐𝑐𝑐 𝐴𝐴  is a singleton 𝑥𝑥! ∈  ℝ called 
the mean value of 𝐴𝐴. It is important to remark that if 𝑁𝑁 and 𝑀𝑀 are single peak 
fuzzy numbers and 𝑐𝑐 ∈  𝑅𝑅, also 𝑐𝑐𝑐𝑐 and 𝑁𝑁 •  𝑀𝑀, with • ∈  +,−,·,÷ , are 
single peak fuzzy numbers. Very popular single peak fuzzy numbers are 
triangular fuzzy numbers. Denote with 𝑁𝑁 = inf 𝑠𝑠𝑠𝑠 𝑁𝑁 ,𝑁𝑁 = sup 𝑠𝑠𝑠𝑠 𝑁𝑁  and 
with  𝑁𝑁 = 𝑐𝑐𝑐𝑐 𝑁𝑁  then the triangular fuzzy number is denoted by 𝑁𝑁 =
𝑁𝑁, 𝑁𝑁, 𝑁𝑁 , while its membership function is defined as follows 

 

𝜇𝜇! 𝑥𝑥 =

𝑥𝑥  −  𝑁𝑁
𝑁𝑁−𝑁𝑁

𝑖𝑖𝑖𝑖 𝑁𝑁 ≤ 𝑥𝑥 ≤ 𝑁𝑁;

𝑥𝑥  − 𝑁𝑁
𝑁𝑁−𝑁𝑁

𝑖𝑖𝑖𝑖𝑁𝑁 < 𝑥𝑥 ≤ 𝑁𝑁;

0, otherwise.

 

It is important to remark that traditional mathematics is based on crisp set 
theory. Fuzzy mathematics is based on fuzzy set theory. Traditional 
mathematics becomes a special case of fuzzy mathematics when all 
membership functions are restricted to have values only zero and one. Each 
real number 𝑐𝑐 can be identified with the crisp fuzzy number having 
membership equal to 
 

𝜇𝜇! 𝑥𝑥 = 1 𝑖𝑖𝑖𝑖 𝑥𝑥 = 𝑐𝑐;
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖. 

so, in particular, each real number can be seen as a fuzzy number having 
single peak. 
 
While we are familiar with the computation of the minimum and the 
maximum between real numbers, we are not familiar with that computation 
between fuzzy numbers instead. Following (Buckley and Eslami, 2002), given 
two continuous fuzzy numbers 𝑁𝑁 and 𝑀𝑀, if 𝑃𝑃 = 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁,𝑀𝑀  and 𝑄𝑄 =
𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁,𝑀𝑀  then the membership functions of 𝑃𝑃 and 𝑄𝑄 are respectively: 

 
𝜇𝜇! 𝑧𝑧 = 𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚 𝜇𝜇! 𝑥𝑥 , 𝜇𝜇! 𝑦𝑦  | 𝑚𝑚𝑚𝑚𝑚𝑚 𝑥𝑥, 𝑦𝑦 = 𝑧𝑧  

and 
and  

𝜇𝜇! 𝑧𝑧 = 𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚 𝜇𝜇! 𝑥𝑥 , 𝜇𝜇! 𝑦𝑦  | 𝑚𝑚𝑚𝑚𝑚𝑚 𝑥𝑥, 𝑦𝑦 = 𝑧𝑧 . 
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single peak fuzzy numbers. Very popular single peak fuzzy numbers are 
triangular fuzzy numbers. Denote with 𝑁𝑁 = inf 𝑠𝑠𝑠𝑠 𝑁𝑁 ,𝑁𝑁 = sup 𝑠𝑠𝑠𝑠 𝑁𝑁  and 
with  𝑁𝑁 = 𝑐𝑐𝑐𝑐 𝑁𝑁  then the triangular fuzzy number is denoted by 𝑁𝑁 =
𝑁𝑁, 𝑁𝑁, 𝑁𝑁 , while its membership function is defined as follows 

 

𝜇𝜇! 𝑥𝑥 =

𝑥𝑥  −  𝑁𝑁
𝑁𝑁−𝑁𝑁

𝑖𝑖𝑖𝑖 𝑁𝑁 ≤ 𝑥𝑥 ≤ 𝑁𝑁;

𝑥𝑥  − 𝑁𝑁
𝑁𝑁−𝑁𝑁

𝑖𝑖𝑖𝑖𝑁𝑁 < 𝑥𝑥 ≤ 𝑁𝑁;

0, otherwise.

 

It is important to remark that traditional mathematics is based on crisp set 
theory. Fuzzy mathematics is based on fuzzy set theory. Traditional 
mathematics becomes a special case of fuzzy mathematics when all 
membership functions are restricted to have values only zero and one. Each 
real number 𝑐𝑐 can be identified with the crisp fuzzy number having 
membership equal to 
 

𝜇𝜇! 𝑥𝑥 = 1 𝑖𝑖𝑖𝑖 𝑥𝑥 = 𝑐𝑐;
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖. 

so, in particular, each real number can be seen as a fuzzy number having 
single peak. 
 
While we are familiar with the computation of the minimum and the 
maximum between real numbers, we are not familiar with that computation 
between fuzzy numbers instead. Following (Buckley and Eslami, 2002), given 
two continuous fuzzy numbers 𝑁𝑁 and 𝑀𝑀, if 𝑃𝑃 = 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁,𝑀𝑀  and 𝑄𝑄 =
𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁,𝑀𝑀  then the membership functions of 𝑃𝑃 and 𝑄𝑄 are respectively: 

 
𝜇𝜇! 𝑧𝑧 = 𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚 𝜇𝜇! 𝑥𝑥 , 𝜇𝜇! 𝑦𝑦  | 𝑚𝑚𝑚𝑚𝑚𝑚 𝑥𝑥, 𝑦𝑦 = 𝑧𝑧  

and 
and  

𝜇𝜇! 𝑧𝑧 = 𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚 𝜇𝜇! 𝑥𝑥 , 𝜇𝜇! 𝑦𝑦  | 𝑚𝑚𝑚𝑚𝑚𝑚 𝑥𝑥, 𝑦𝑦 = 𝑧𝑧 . 
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3. Preliminaries 
In this section some definitions and basic results from the theory of fuzzy 
sets are reported. 
Wide surveys and references may be found in (Zadeh, 1965), (Zimmermann, 
2011), (Klir and Yuan, 1995). Let 𝑋𝑋 be a universal set, with a generic element 
of 𝑋𝑋 denoted by 𝑥𝑥. Thus, 𝑋𝑋 = 𝑥𝑥 . A fuzzy set 𝑁𝑁 in X (fuzzy subset 𝑁𝑁 of 𝑋𝑋) is 
characterized by a membership function 𝜇𝜇! 𝑥𝑥  which associates with each 
point in 𝑋𝑋 a real number in the interval 0,1 . The value𝜇𝜇! 𝑥𝑥  represents the 
grade of membership of 𝑥𝑥 in 𝑁𝑁. When 𝑁𝑁 is a set in the ordinary sense of the 
term, its membership can take only two values 0 and 1 according as 𝑥𝑥 does 
or does not belong to 𝑁𝑁. Let 𝑁𝑁 be a fuzzy subset of 𝑋𝑋, the 𝛼𝛼-𝑐𝑐𝑐𝑐𝑐𝑐 of 𝑁𝑁 is 
defined as: 
 

N [α] = {x ∈ X | 𝜇𝜇! (x) ≥ α}, for 0 < α ≤ 1 
 
The core of 𝑁𝑁, 𝑐𝑐𝑐𝑐 𝑁𝑁 , is 𝑁𝑁 1  while the support of 𝑁𝑁, 𝑠𝑠𝑠𝑠 𝑁𝑁 , of 𝑁𝑁 is not 𝑁𝑁 0  
(which is always the whole universe 𝑋𝑋) but 𝑠𝑠𝑠𝑠 𝑁𝑁 = 𝑥𝑥 ∈ 𝑋𝑋|𝜇𝜇! 𝑥𝑥 > 𝛼𝛼 . 
With 𝑠𝑠𝑠𝑠 𝑁𝑁  will be denoted the closure of the support of 𝑁𝑁. A fuzzy number 
is called single peak if the core is a singleton. 
Referring to (Goetschel Jr and Voxman, 1986) (see also (Chai and Zhang, 
2016)) a fuzzy number 𝑁𝑁 is a fuzzy subset of ℝ, with membership function 
denoted by µ! , satisfying the following conditions: 
 
1. 𝜇𝜇! is normal, i.e., 𝑐𝑐𝑐𝑐 𝑁𝑁  is non­empty. 
2. 𝜇𝜇! is compactly supported, i.e., 𝑠𝑠𝑠𝑠 𝑁𝑁  is bounded; 
3. 𝜇𝜇! is quasi­concave, i.e., 𝑥𝑥 ⩽  𝑦𝑦 ⩽  𝑧𝑧 implies: 

𝑚𝑚𝑚𝑚𝑚𝑚 𝜇𝜇! 𝑥𝑥 , 𝜇𝜇! 𝑧𝑧 ⩽ 𝜇𝜇! 𝑦𝑦  ∀𝑥𝑥, 𝑦𝑦, 𝑧𝑧 ∈ ℝ; 
4. 𝜇𝜇! is upper semi­continuous, i.e., ∀ 𝛼𝛼 ∈ ]0,1], 𝑁𝑁[𝛼𝛼] is closed. 

 
In (Goetschel Jr and Voxman, 1986) the following characterization of a fuzzy 
number is given. 
Defining 
 

𝑁𝑁 𝛼𝛼  

=     𝑥𝑥 𝜖𝜖 ℝ | 𝜇𝜇! 𝑥𝑥  ≥  𝛼𝛼 , 𝑖𝑖𝑖𝑖 0 < 𝛼𝛼 ≤ 1;    
𝑠𝑠𝑠𝑠 𝑁𝑁 ,                                    𝑖𝑖𝑖𝑖 𝛼𝛼 = 0 ;        

 

 

(1) 

 
it can be shown that 𝑁𝑁 is a fuzzy number if and only if 
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If 𝑁𝑁 and 𝑀𝑀 are single peak fuzzy numbers, as proved in (Hong and Kim, 2006) 
(see also (Chiu and Wang, 2002)), the 𝛼𝛼-𝑐𝑐𝑐𝑐𝑐𝑐 of 𝑃𝑃 and 𝑄𝑄 are given by 
 

𝑃𝑃 𝛼𝛼 = 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 𝛼𝛼 ,𝑀𝑀 𝛼𝛼 ,𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 𝛼𝛼 ,𝑀𝑀 𝛼𝛼  
and 

𝑄𝑄 𝛼𝛼 = 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 𝛼𝛼 ,𝑀𝑀 𝛼𝛼 ,𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 𝛼𝛼 ,𝑀𝑀 𝛼𝛼  
 
 thus P and Q have the following parameterized representations 
 

𝑃𝑃 = 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 𝛼𝛼 ,𝑀𝑀 𝛼𝛼 ,𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 𝛼𝛼 ,𝑀𝑀 𝛼𝛼  | 𝛼𝛼 ∈ 0, 1  
and 

𝑄𝑄 = 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 𝛼𝛼 ,𝑀𝑀 𝛼𝛼 ,𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 𝛼𝛼 ,𝑀𝑀 𝛼𝛼  | 𝛼𝛼 ∈ 0, 1  
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4. The method 

Let us consider a set of options 𝐼𝐼 =  {1,··· , 𝑛𝑛} and a set of criteria 
 𝐽𝐽 =  {1,·, 𝑘𝑘}. The performance of each option 𝑖𝑖 ∈  𝐼𝐼 is valued with respect to 
each criterion 𝑗𝑗 ∈  𝐽𝐽 along a certain scale to obtain the value score 𝑣𝑣!" . The 
criteria are weighted generating the relative importance judgements 𝑤𝑤!  so 
that so that the following normalization condition holds true  
 

𝑤𝑤!

!

!!!

= 1. (2) 

 
The overall score for option 𝑖𝑖 is 
 

𝑉𝑉! = 𝑤𝑤!

!

!!!

𝑣𝑣!"  

 

(3) 

 
so the decision model suggests to choose the option with highest score 
𝑉𝑉! (𝑖𝑖 =  1,··· , 𝑛𝑛). 
By decision-making in a fuzzy environment, we mean a decision process in 
which the goals and/or the constraints, but not necessarily the system under 
control, are constitute classes of alternatives whose boundaries are not 
sharply defined. Let us suppose that both the value scores 𝑣𝑣!"  and the 
weights 𝑤𝑤! (𝑖𝑖 =  1,··· , 𝑛𝑛;  𝑗𝑗 =  1,··· , 𝑘𝑘) are uncertain in the sense that the 
decision maker is not sure about their exact value but has the idea that, for 
example, the value score of option 𝑖𝑖 with respect to criteria 𝑗𝑗 is 
approximatively 𝑣𝑣!"  and that he wants to assign to criteria 𝑗𝑗 a weight that is 
approximatively 𝑤𝑤! . This kind of uncertain information may be modelled 
assuming the above uncertain quantities to be single peak fuzzy numbers 
given by the following parameterized representation: 

 
𝑣𝑣!" 𝛼𝛼 , 𝑣𝑣!" 𝛼𝛼 | 0 ≤ 𝛼𝛼 ≤ 1  
𝑤𝑤! 𝛼𝛼 ,𝑤𝑤! 𝛼𝛼 | 0 ≤ 𝛼𝛼 ≤ 1  

 
for 𝑖𝑖 = 1, . . . , 𝑛𝑛 and 𝑗𝑗 = 1, . . . , 𝑘𝑘. 
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The fuzzy overall score of option 𝒊𝒊 
𝑉𝑉! 𝛼𝛼 , 𝑉𝑉! 𝛼𝛼  | 0 ≤  𝛼𝛼 ≤  1  (4) 

 
is computed from (3) by the interval algebra operations as follows: 

𝑉𝑉! 𝛼𝛼 = 𝑃𝑃 ! 𝛼𝛼
!

!!!

 (5) 

and 

𝑉𝑉! 𝛼𝛼 = 𝑃𝑃! 𝛼𝛼
!

!!!

 (6) 

 
where 𝑃𝑃 ![𝛼𝛼] and 𝑃𝑃![𝛼𝛼] are respectively 
 

𝑚𝑚𝑚𝑚𝑚𝑚 𝑤𝑤 ! 𝛼𝛼 𝑣𝑣!" 𝛼𝛼 ,  𝑤𝑤 ! 𝛼𝛼 𝑣𝑣!" 𝛼𝛼 , 𝑤𝑤! 𝛼𝛼 𝑣𝑣!! 𝛼𝛼 , 𝑤𝑤! 𝛼𝛼 𝑣𝑣!" 𝛼𝛼  
 

𝑚𝑚𝑚𝑚𝑚𝑚 𝑤𝑤 ! 𝛼𝛼 𝑣𝑣!" 𝛼𝛼 ,  𝑤𝑤 ! 𝛼𝛼 𝑣𝑣!" 𝛼𝛼 , 𝑤𝑤! 𝛼𝛼 𝑣𝑣!" 𝛼𝛼 , 𝑤𝑤! 𝛼𝛼 𝑣𝑣!" 𝛼𝛼  
 

The normalization condition (2) is retrieved inasmuch as it holds on the 
mean values of the fuzzy numbers {(𝑤𝑤 ![𝛼𝛼], 𝑤𝑤![𝛼𝛼])| 0 ≤  𝛼𝛼 ≤  1} 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 =
 1,···, 𝑘𝑘. 
It is important to remark that, while the input data 
(𝑣𝑣!",   𝑤𝑤!, 𝑖𝑖 =  1,···, 𝑛𝑛 ;  𝑗𝑗 =  1,···, 𝑘𝑘) of the introduced model are triangular 
fuzzy numbers, the fuzzy overall score (4) it is not. It is known in fact that, if 
𝑀𝑀 and 𝑁𝑁 are triangular fuzzy numbers, then so is 𝑀𝑀 +  𝑁𝑁 and 𝑀𝑀 −  𝑁𝑁, 
however 𝑀𝑀 ·  𝑁𝑁 will be a triangular shaped fuzzy number. 
Once the overall fuzzy scores are computed for each option, the decision 
model should recommend the option with the greatest fuzzy score (4). It is 
known however that, given two fuzzy numbers 𝑀𝑀 and 𝑁𝑁, 𝑃𝑃 =  𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀,𝑁𝑁) 
and 𝑄𝑄 =  𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀,𝑁𝑁) not always equals 𝑀𝑀 or 𝑁𝑁. A methodology for ranking 
fuzzy numbers has been necessary for this purpose. 
Ranking fuzzy numbers is the subject of a vast literature (Asady and 
Zendehnam, 2007). In this work, a combination of the methods proposed by 
Tran and Duckstein (Tran and Duckstein, 2002) and Asady and Zendehnam 
(Asady and Zendehnam, 2007) is used for ranking fuzzy scores. The method 
is based on the comparison of distances from fuzzy numbers (FNs) to some 
predetermined targets. 
For arbitrary fuzzy numbers in parametric form N and M, the quantity 
 

𝐷𝐷 𝑁𝑁,𝑀𝑀 = 𝑁𝑁 𝛼𝛼 −𝑀𝑀 𝛼𝛼 ! 𝑑𝑑𝑑𝑑 + 𝑁𝑁 𝛼𝛼 −𝑀𝑀 𝛼𝛼
!

 𝑑𝑑𝑑𝑑
!

!

!

!
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The normalization condition (2) is retrieved inasmuch as it holds on the 
mean values of the fuzzy numbers {(𝑤𝑤 ![𝛼𝛼], 𝑤𝑤![𝛼𝛼])| 0 ≤  𝛼𝛼 ≤  1} 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 =
 1,···, 𝑘𝑘. 
It is important to remark that, while the input data 
(𝑣𝑣!",   𝑤𝑤!, 𝑖𝑖 =  1,···, 𝑛𝑛 ;  𝑗𝑗 =  1,···, 𝑘𝑘) of the introduced model are triangular 
fuzzy numbers, the fuzzy overall score (4) it is not. It is known in fact that, if 
𝑀𝑀 and 𝑁𝑁 are triangular fuzzy numbers, then so is 𝑀𝑀 +  𝑁𝑁 and 𝑀𝑀 −  𝑁𝑁, 
however 𝑀𝑀 ·  𝑁𝑁 will be a triangular shaped fuzzy number. 
Once the overall fuzzy scores are computed for each option, the decision 
model should recommend the option with the greatest fuzzy score (4). It is 
known however that, given two fuzzy numbers 𝑀𝑀 and 𝑁𝑁, 𝑃𝑃 =  𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀,𝑁𝑁) 
and 𝑄𝑄 =  𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀,𝑁𝑁) not always equals 𝑀𝑀 or 𝑁𝑁. A methodology for ranking 
fuzzy numbers has been necessary for this purpose. 
Ranking fuzzy numbers is the subject of a vast literature (Asady and 
Zendehnam, 2007). In this work, a combination of the methods proposed by 
Tran and Duckstein (Tran and Duckstein, 2002) and Asady and Zendehnam 
(Asady and Zendehnam, 2007) is used for ranking fuzzy scores. The method 
is based on the comparison of distances from fuzzy numbers (FNs) to some 
predetermined targets. 
For arbitrary fuzzy numbers in parametric form N and M, the quantity 
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is the distance between N and M (Asady and Zendehnam, 2007). 
A fuzzy number will be ranked first if its distance from the maximum M is the 
smallest and its distance from the minimum m is the greatest. When only 
one of the previous conditions is satisfied, ranking should be determined by 
the attitude of the decision maker towards risk. A risk­averse decision maker 
might prefer a score that is as far as possible from the minimum, whereas a 
risk seeking individual would rather choose the closets score to the 
maximum. The reader interested in this subject is referred to the work of Yu 
etal. (Yu et al., 2018) where, in essence, compromise­typed variable weight 
functions are constructed by means of utility functions and the variable 
weight decision making is done through the inspection of variable weight 
synthesis and the orness measures derived from the coefficients of absolute 
risk aversion. 
 
4.1. Technical considerations 
 
Let us remark that to extend the MCDM to a fuzzy framework it has been 
necessary to consider: 

1. an algebra over the set of fuzzy numbers; 
2. a method for computing 𝑚𝑚𝑚𝑚𝑚𝑚 / 𝑚𝑚𝑚𝑚𝑚𝑚{𝑁𝑁,𝑀𝑀} for single peak fuzzy numbers 
𝑁𝑁,𝑀𝑀. 
 
1. It is known that, in many practical applications when handling with 
fuzzy numbers, it is necessary to have a permanent switch from a fuzzy 
representation to a numerical one. This transformation is usually carried out 
by the defuzzification process which, however, may cause loss of 
information. In this paper fuzzy numbers are combined one to another 
without any defuzzification method but making use of the interval algebra 
instruments. Operations between fuzzy numbers can be easily implemented 
on a computer by means of interval arithmetic on their α­cuts, which are 
always closed and bounded intervals for 0 ≤  𝛼𝛼 ≤  1. The 𝛼𝛼-𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 of a fuzzy 
number are univocally determined computing left/right side membership 
inverse. 
2. While we are familiar with the computation of the minimum and the 
maximum between real numbers, we are not familiar with that computation 
between fuzzy numbers instead. In this paper we follow the approach of (De 
Marco et al., 2020) which present and implement a new method for 
computing 
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where 𝑁𝑁 is a triangular fuzzy number while 𝑀𝑀 is a fuzzy number single peak 
of any shape. A little discernment with respect to (De Marco et al., 2020) has 
been introduced in the case 𝑁𝑁 and 𝑀𝑀 are both single peak of any shape. 
 
5. Conclusion 
 
In this work, the MCDM problem with imprecision in both the evaluations 
and the criteria weights is addressed. For each of the considered criteria, a 
decision maker evaluates the convenience of an alternative from a 
personalized viewpoint, resulting in an imprecise score which can be 
modelled by a triangular fuzzy number. The overall score of the alternative is 
then determined by aggregating the preference scores according to weights 
that quantify their importance, and imprecision in these weights can again 
be expressed with triangular fuzzy numbers. The resulting weighted sum is 
no longer a triangular fuzzy number, but it can be a fuzzy number of any 
shape. By computing the fuzzy minimum and maximum of the scores and 
using them as reference values, alternatives can be ranked. The advantage of 
the proposed method is that it is contained in the framework of fuzzy 
numbers. Directions for future development include the extension of the 
proposed method to the MCGDM, where a group of decision makers need to 
integrate their preferences. If an aggregation approach is chosen based on 
weights reflecting the relative importance of individual decision makers 
(perhaps related to their hierarchical position or their perceived knowledge) 
and such weights are fuzzy, a method that is able to handle the results of 
individual preferences and the details about their ranking will be needed.  
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is the distance between N and M (Asady and Zendehnam, 2007). 
A fuzzy number will be ranked first if its distance from the maximum M is the 
smallest and its distance from the minimum m is the greatest. When only 
one of the previous conditions is satisfied, ranking should be determined by 
the attitude of the decision maker towards risk. A risk­averse decision maker 
might prefer a score that is as far as possible from the minimum, whereas a 
risk seeking individual would rather choose the closets score to the 
maximum. The reader interested in this subject is referred to the work of Yu 
etal. (Yu et al., 2018) where, in essence, compromise­typed variable weight 
functions are constructed by means of utility functions and the variable 
weight decision making is done through the inspection of variable weight 
synthesis and the orness measures derived from the coefficients of absolute 
risk aversion. 
 
4.1. Technical considerations 
 
Let us remark that to extend the MCDM to a fuzzy framework it has been 
necessary to consider: 

1. an algebra over the set of fuzzy numbers; 
2. a method for computing 𝑚𝑚𝑚𝑚𝑚𝑚 / 𝑚𝑚𝑚𝑚𝑚𝑚{𝑁𝑁,𝑀𝑀} for single peak fuzzy numbers 
𝑁𝑁,𝑀𝑀. 
 
1. It is known that, in many practical applications when handling with 
fuzzy numbers, it is necessary to have a permanent switch from a fuzzy 
representation to a numerical one. This transformation is usually carried out 
by the defuzzification process which, however, may cause loss of 
information. In this paper fuzzy numbers are combined one to another 
without any defuzzification method but making use of the interval algebra 
instruments. Operations between fuzzy numbers can be easily implemented 
on a computer by means of interval arithmetic on their α­cuts, which are 
always closed and bounded intervals for 0 ≤  𝛼𝛼 ≤  1. The 𝛼𝛼-𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 of a fuzzy 
number are univocally determined computing left/right side membership 
inverse. 
2. While we are familiar with the computation of the minimum and the 
maximum between real numbers, we are not familiar with that computation 
between fuzzy numbers instead. In this paper we follow the approach of (De 
Marco et al., 2020) which present and implement a new method for 
computing 
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